Synthesis and Chemical Transformations of 9-(2-Propynyl)tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodec-4-ene

F. R. Gakhramanov
Sumgait State University, 43 kvartal, Sumgait, 373206 Azerbaidzhan

Received April 11, 2002

Abstract

Diels-Alder reaction of allylacetylene with cyclopentadiene involves the double bond of the former to afford 9-(2-propynyl)tetracyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$]dodec-4-ene. Treatment of the adduct with ethylmagnesium bromide gives the corresponding Iotsitch compound which readily reacts with acetone, acetic anhydride, acrolein, and chlorotrimethylsilane, yielding tetracyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$]dodec-4-ene derivatives having hydroxy, acetyl, trimethylsilyl, or 1-hydroxypropenyl group in the side chain. Hydrosilylation of 9-(2-propynyl)tetracyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$]dodec-4-ene over rhodium catalyst occurs in a stereoselective fashion to give only the trans adduct.

Enyne hydrocarbons are widely used as physiologically active substances and plasticizers; also, they are very important components of fragrant materials [1]. However, there are no published data on the synthesis of acetylene-containing carbo- or heterofunctional compounds of the tetracyclic series. With the goal of preparing such compounds, cyclopentadiene was brought into the Diels-Alder reaction with allylacetylene. As a result, 9-(2-propynyl)tetracyclo[6.2.1.1 $1^{3,6} .0^{2,7}$]dodec-4-ene (I) was synthesized (Scheme 1). Some chemical transformations of this
compound were studied. Molecule I contains three potential reaction centers: acetylenic hydrogen atom and double and triple bonds, which could give rise to various functional derivatives. Treatment of I with ethylmagnesium bromide gave the corresponding Iotsitch compound which readily reacted with acetone, acetic anhydride, acrolein, and chlorotrimethylsilane to afford products $\mathbf{I I}-\mathbf{V}$ in more than 70% yield (Scheme 1). Oxidation of I with peroxyacetic acid occurs selectively at the double bond, yielding compound VI.

Scheme 1.

VI

1070-4280/03/3905-0654\$25.00 ©2003 MAIK"Nauka/Interperiodica"

Scheme 2.

IX

The structure of compounds II-VI was determined by IR and ${ }^{1}$ H NMR spectroscopy, and their purity was checked by thin-layer and gas-liquid chromatography. In the IR spectra of the products, medium-intensity bands in the regions $1630-1635$ and $2240-2245 \mathrm{~cm}^{-1}$ unequivocally belong to stretching vibrations of the double and triple carbon-carbon bonds [2], and a broad band with its center at $3460 \mathrm{~cm}^{-1}$ in the spectrum of alcohol II corresponds to vibrations of associated hydroxy group. Epoxy derivative VI shows in the spectrum strong absorption bands at 805,920 , and $3060 \mathrm{~cm}^{-1}$ [3], indicating endo orientation of the epoxy bridge in keeping with published data [4].

Compound I readily undergoes hydrolysis to the corresponding ketone VII. Oxidative condensation of I in the presence of CuCl gives polycyclic diacetylene derivative VIII (Scheme 3). The latter shows in the IR spectrum an absorption band at $2250 \mathrm{~cm}^{-1}$, which belongs to stretching vibrations of disubstituted triple
bond. It was found that addition of triethoxysilane to compound I in the presence of (acetylacetonato)(dicarbonyl)rhodium occurs regio- and stereoselectively at the triple bond, yielding trans isomer IX. The ${ }^{1} \mathrm{H}$ NMR spectrum of IX contained signals from protons of the $\mathrm{SiCH}=\mathrm{CH}$ fragment as doublets of doublets at $\delta 4.76-5.45 \mathrm{ppm}$ with a coupling constant ${ }^{3} J$ of 13.2 Hz which indicates trans configuration of the double bond.

The yields, physical constants, elemental analyses, and IR and ${ }^{1} \mathrm{H}$ NMR spectra of compounds I-IX are given in Tables 1 and 2.

EXPERIMENTAL

The IR spectra were recorded on a Specord-75 spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Tesla BS-487B instrument (80 MHz) using HMDS as internal reference. The purity of the products was

Table 1. Yields, physical constants, elemental analyses, and IR spectra of tetracyclododecene derivatives I-IX

Comp. no.	Yield, \%	$\begin{aligned} & \mathrm{bp},{ }^{\circ} \mathrm{C} \\ & (p, \mathrm{~mm}) \end{aligned}$	$n_{\text {D }}^{20}$	d_{4}^{20}	Found, \%		Formula	Calculated, \%		IR spectrum, cm^{-1}
					C	H		C	H	
I	93.3	87-88 (27)	1.5328	1.0224	90.88	9.12	$\mathrm{C}_{15} \mathrm{H}_{18}$	90.91	9.09	730, 1650, 2130, 3300
II	72.5	121-122 (1)	1.5284	1.0189	84.14	9.62	$\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$	84.32	9.43	720, 1670, 2230, 3460
III	76.3	125-127 (1)	1.5102	1.0599	84.55	8.44	$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}$	84.95	8.39	730, 1650, 1740, 2230
IV	85.6	151-152 (5)	1.5366	1.0436	84.95	8.80	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}$	84.99	8.71	$\begin{aligned} & 720,1590,1660,2240, \\ & 3420 \end{aligned}$
V	86.5	141-142 (3)	1.5301	0.9876	79.61	9.48	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Si}$	79.92	9.69	735, 1255, 1665, 2195
VI	70.5	66-67 (10)	1.5093	1.0532	84.32	8.59	$\mathrm{C}_{15} \mathrm{~N}_{18} \mathrm{O}$	84.06	8.47	805, 920, 2235, 3060
VII	92.5	116-117 (3)	1.5272	1.0576	83.54	9.09	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$	83.28	9.31	730, 1660, 1740, 2235
VIII	96.0	mp $94{ }^{\circ} \mathrm{C}$	-	-	91.14	8.86	$\mathrm{C}_{30} \mathrm{H}_{34}$	91.31	8.68	$725,1600,2230$
IX	76.7	158-159 (1)	1.4872	1.0172	69.60	9.54	$\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}$	69.56	9.45	1250, 1610, 1640

Table 2. ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{\text {a }}$ (chemical shifts δ, ppm) of tetracyclododecene derivatives I-VII and IX

Comp. no.	$1-\mathrm{H}$, m	$2-\mathrm{H}, 7-\mathrm{H}$, m,	$3-\mathrm{H}, 6-\mathrm{H}$, m	$4-\mathrm{H}, 5-\mathrm{H}$, m	$8-\mathrm{H}$, m	$9-\mathrm{H}$, m	$10-\mathrm{H}_{A}$, m	$10-\mathrm{H}_{B}$, m	$11-\mathrm{H}, 12-\mathrm{H}$, m	$13-\mathrm{H}$, m
\mathbf{I}	$1.7-2.1$	$1.7-2.3$	$2.7-3.0$	$5.8-5.9$	$1.7-2.3$	2.4	0.9	2.1	$1.1-1.35$	2.2
$\mathbf{I I}$	$2.7-3.0$	$2.0-2.4$	$2.7-2.9$	$5.9-6.1$	$1.5-2.5$	2.5	0.7	2.5	$1.1-2.0$	2.2
$\mathbf{I I I}$	$2.8-3.1$	$2.1-2.3$	$2.7-2.9$	$5.7-6.1$	$1.6-2.5$	2.6	0.9	2.5	$1.1-2.1$	$2.0-2.2$
$\mathbf{I V}$	$2.7-3.2$	3.4	$2.6-2.8$	$5.6-6.1$	$1.3-1.5$	2.2	0.8	2.4	$1.2-2.4$	1.9
\mathbf{V}	$2.7-2.9$	$2.1-2.3$	$2.7-3.1$	$5.7-6.0$	$1.6-2.2$	2.3	0.9	2.5	$1.1-1.9$	2.1
VI	$2.6-3.1$	$1.9-2.2$	$2.7-2.9$	2.7	$1.2-1.4$	2.3	0.9	2.3	$1.1-1.4$	2.2
VII	$2.7-3.2$	3.3	$2.6-2.8$	$5.8-6.2$	$1.1-1.3$	2.2	0.8	2.6	$1.1-2.3$	1.9
$\mathbf{I X}$	$2.6-3.3$	2.3	$2.6-2.7$	$5.6-6.1$	$1.2-1.4$	2.4	0.9	2.5	$1.2-2.1$	2.1

${ }^{\text {a }}$ Other signals, δ, ppm: I: $1.85 \mathrm{~s}(\mathrm{C} \equiv \mathrm{CH})$; II: $1.1-2.0 \mathrm{~m}\left(\mathrm{CH}_{3}\right)$, $3.5 \mathrm{~s}(\mathrm{OH})$; III: $1.96 \mathrm{~s}\left(\mathrm{COCH}_{3}\right)$; IV: $3.5 \mathrm{~s}(\mathrm{OH}), 5.8(=\mathrm{CH})$, $5.00-5.25 \mathrm{~m}\left(=\mathrm{CH}_{2}\right) ; \mathbf{V}: 0.2 \mathrm{~s}\left(\mathrm{SiMe}_{3}\right) ;$ VI: $1.85 \mathrm{~s}(\mathrm{C} \equiv \mathrm{CH})$; VII: $1.95 \mathrm{~s}\left(\mathrm{COCH}_{3}\right)$; IX: 5.1 m and $5.4 \mathrm{~m}(\mathrm{SiCH}=\mathrm{CH}), 3.55 \mathrm{q}$ $\left(\mathrm{OCH}_{2}\right), 1.05 \mathrm{t}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$.
checked by TLC on Silufol plates and by GLC on a Chrom chromatograph (30% of SF-30 on Chromaton N-AW-DMCS).

9-(2-Propynyl)tetracyclo[6.2.1.1 ${ }^{3,6} \cdot 0^{2,7}$]dodec-4ene (\mathbf{I}). A mixture of $9.9 \mathrm{~g}(0.15 \mathrm{~mol})$ of allylacetylene, $19.9 \mathrm{~g}(0.3 \mathrm{~mol})$ of freshly distilled cyclopentadiene, and 0.06 g of hydroquinone was heated in a sealed ampule for 15 h at $160^{\circ} \mathrm{C}$. Vacuum distillation gave 21.8 g of compound \mathbf{I}.

9-(4-Hydroxy-4-methyl-2-pentynyl)tetracyclo[6.2.1.1 ${ }^{\mathbf{3 , 6}} \mathbf{. 0}^{\mathbf{2 , 7}}$]dodec-2-ene (II). Compound I, 19.8 g $(0.1 \mathrm{~mol})$, was added to a solution of ethylmagnesium bromide, prepared from 2.3 g of magnesium and 10.9 g of ethyl bromide in anhydrous ether. The mixture was stirred for 5 h under reflux and cooled to $5^{\circ} \mathrm{C}$, and $5.8 \mathrm{~g}(0.1 \mathrm{~mol})$ of acetone in 50 ml of ether was added. After appropriate treatment, vacuum distillation gave 14.8 g of compound II.

9-(4-Oxo-2-pentynyl)tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ -dodec-4-ene (III) was synthesized as described above for alcohol II from 15.8 g of compound I and 8.2 g $(0.8 \mathrm{~mol})$ of acetic anhydride. The mixture was stirred for 6 h at room temperature and was then decomposed with water. After appropriate treatment, vacuum distillation gave 15.1 g of ketone III.

9-(4-Hydroxy-5-hexen-2-ynyl)tetracyclo[6.2.1.1 ${ }^{3,6} . \mathbf{0}^{2,7}$]dodec-4-ene (IV). A solution of 2.8 g $(0.05 \mathrm{~mol})$ of acrolein in dry ether was slowly added with stirring and cooling to the Iotsitch compound
prepared from compound \mathbf{I}. The mixture was heated at $30-35^{\circ} \mathrm{C}$ and was then treated with a dilute acid. The solvent was removed, and the residue was distilled under reduced pressure to obtain 10.8 g of product IV.

9-[3-(Trimethylsilyl)-2-propynyl]tetracyclo[6.2.1.1 ${ }^{3,6} .0^{2,7}$ dodec-4-ene (V) was synthesized as described above for compound II from 5.9 g of enyne I and $3.3 \mathrm{~g}(0.03 \mathrm{~mol})$ of chlorotrimethylsilane. The mixture was stirred for 3 h at $25^{\circ} \mathrm{C}$ and for 6 h under reflux. After appropriate treatment, vacuum distillation gave 7.0 g of compound \mathbf{V}.

4,5-Epoxy-9-(2-propynyl)tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodecane (VI). Compound I, $7.9 \mathrm{~g}(0.04 \mathrm{~mol})$, was dissolved in ether, and 10.1 ml of 85% peroxyacetic acid was added at $20^{\circ} \mathrm{C}$ under vigorous stirring. The mixture was stirred for 6 h and neutralized with a 10% solution of sodium carbonate. After appropriate treatment, vacuum distillation gave 6.1 g of epoxy derivative VI.

9-(2-Hydroxypropyl)tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ -dodec-4-ene (VII). A mixture of 0.2 g of $\mathrm{Hg}\left(\mathrm{SO}_{4}\right)_{2}$ and 0.4 ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 10 ml of distilled water was heated for 1.5 h at $65^{\circ} \mathrm{C}$; the temperature was then raised to $85^{\circ} \mathrm{C}, 3.96 \mathrm{~g}(0.02 \mathrm{~mol})$ of compound \mathbf{I} was added dropwise under vigorous stirring, and the mixture was stirred for 6 h and was left overnight. The precipitate was filtered off and washed with ether, and the filtrate was washed with a saturated solution of NaCl until neutral reaction and dried over calcined
MgSO_{4}. The solvent was removed, and the residue was distilled under reduced pressure to obtain 4.0 g of compound VII.

1,6-Bis(tetracyclo[6.2.1.1 $\left.{ }^{3,6} .0^{2,7}\right]$ dodec-9-en-4-yl)-2,4-hexadiyne (VIII). Air was bubbled over a period of 8 h at $35^{\circ} \mathrm{C}$ through a mixture of $12.0 \mathrm{~g}(0.06 \mathrm{~mol})$ of compound $\mathbf{I}, 8 \mathrm{~g}$ of $\mathrm{CuCl}, 60 \mathrm{ml}$ of methanol, and 100 ml of pyridine. The mixture was then poured into a saturated solution of ammonium chloride and extracted with ether. The extract was washed with hydrochloric acid and dried over $\mathrm{K}_{2} \mathrm{SO}_{3}$. The solvent was distilled off, and the residue was recrystallized from hexane. Yield of VIII 11.4 g .

9-[3-Triethoxysilyl)-2-propenyl]tetracyclo[6.2.1.1 ${ }^{3,6} . \mathbf{0}^{2,7}$]dodec-4-ene (IX). A mixture of 8.2 g $(0.05 \mathrm{~mol})$ of triethoxysilane, $9.9 \mathrm{~g}(0.05 \mathrm{~mol})$ of
compound \mathbf{I}, and 0.003 g of (acetylacetonato)(dicarbonyl)rhodium in 50 ml of dry benzene was refluxed for 12 h . Vacuum distillation gave 13.7 g of $\mathbf{I X}$.

REFERENCES

1. Acetylenes, Viehe, H.G., Ed., New York: Marcel Dekker, 1969.
2. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoi khimii (Application of UV, IR, and NMR Spectroscopy in Organic Chemistry), Moscow: Vysshaya Shkola, 1971.
3. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, New York: Wiley, 1974, 3rd ed.
4. Henbest, H.B., J. Chem. Soc., 1959, p. 225.
