Russian Journal of Organic Chemistry, Vol. 39, No. 5, 2003, pp. 654–657. Translated from Zhurnal Organicheskoi Khimii, Vol. 39, No. 5, 2003, pp. 699–702. Original Russian Text Copyright © 2003 by Gakhramanov.

Synthesis and Chemical Transformations of 9-(2-Propynyl)tetracyclo[6.2.1.1^{3,6}.0^{2,7}]dodec-4-ene

F. R. Gakhramanov

Sumgait State University, 43 kvartal, Sumgait, 373206 Azerbaidzhan

Received April 11, 2002

Abstract—Diels–Alder reaction of allylacetylene with cyclopentadiene involves the double bond of the former to afford 9-(2-propynyl)tetracyclo[$6.2.1.1^{3,6}.0^{2,7}$]dodec-4-ene. Treatment of the adduct with ethylmagnesium bromide gives the corresponding Iotsitch compound which readily reacts with acetone, acetic anhydride, acrolein, and chlorotrimethylsilane, yielding tetracyclo[$6.2.1.1^{3,6}.0^{2,7}$]dodec-4-ene derivatives having hydroxy, acetyl, trimethylsilyl, or 1-hydroxypropenyl group in the side chain. Hydrosilylation of 9-(2-propynyl)tetracyclo[$6.2.1.1^{3,6}.0^{2,7}$]dodec-4-ene over rhodium catalyst occurs in a stereoselective fashion to give only the *trans* adduct.

Enyne hydrocarbons are widely used as physiologically active substances and plasticizers; also, they are very important components of fragrant materials [1]. However, there are no published data on the synthesis of acetylene-containing carbo- or heterofunctional compounds of the tetracyclic series. With the goal of preparing such compounds, cyclopentadiene was brought into the Diels–Alder reaction with allylacetylene. As a result, 9-(2-propynyl)tetracyclo-[$6.2.1.1^{3.6}.0^{2.7}$]dodec-4-ene (**I**) was synthesized (Scheme 1). Some chemical transformations of this compound were studied. Molecule **I** contains three potential reaction centers: acetylenic hydrogen atom and double and triple bonds, which could give rise to various functional derivatives. Treatment of **I** with ethylmagnesium bromide gave the corresponding lotsitch compound which readily reacted with acetone, acetic anhydride, acrolein, and chlorotrimethylsilane to afford products **II**–**V** in more than 70% yield (Scheme 1). Oxidation of **I** with peroxyacetic acid occurs selectively at the double bond, yielding compound **VI**.

1070-4280/03/3905-0654 \$25.00 © 2003 MAIK "Nauka/Interperiodica"

The structure of compounds **II**–VI was determined by IR and ¹H NMR spectroscopy, and their purity was checked by thin-layer and gas–liquid chromatography. In the IR spectra of the products, medium-intensity bands in the regions 1630–1635 and 2240–2245 cm⁻¹ unequivocally belong to stretching vibrations of the double and triple carbon–carbon bonds [2], and a broad band with its center at 3460 cm⁻¹ in the spectrum of alcohol **II** corresponds to vibrations of associated hydroxy group. Epoxy derivative **VI** shows in the spectrum strong absorption bands at 805, 920, and 3060 cm⁻¹ [3], indicating *endo* orientation of the epoxy bridge in keeping with published data [4].

Compound I readily undergoes hydrolysis to the corresponding ketone VII. Oxidative condensation of I in the presence of CuCl gives polycyclic diacetylene derivative VIII (Scheme 3). The latter shows in the IR spectrum an absorption band at 2250 cm^{-1} , which belongs to stretching vibrations of disubstituted triple

bond. It was found that addition of triethoxysilane to compound **I** in the presence of (acetylacetonato)(dicarbonyl)rhodium occurs regio- and stereoselectively at the triple bond, yielding *trans* isomer **IX**. The ¹H NMR spectrum of **IX** contained signals from protons of the SiCH=CH fragment as doublets of doublets at δ 4.76–5.45 ppm with a coupling constant ³J of 13.2 Hz which indicates *trans* configuration of the double bond.

The yields, physical constants, elemental analyses, and IR and ¹H NMR spectra of compounds I-IX are given in Tables 1 and 2.

EXPERIMENTAL

The IR spectra were recorded on a Specord-75 spectrometer. The ¹H NMR spectra were obtained on a Tesla BS-487B instrument (80 MHz) using HMDS as internal reference. The purity of the products was

Comp. Yield, no. %	Yield,	bp, °C	$n_{\rm D}^{20}$	d_4^{20}	Found, %		Earmula	Calculated, %		JD		
	%	(<i>p</i> , mm)	n _D		С	Н	Formula	С	Н	IR spectrum, cm ⁻¹		
I	93.3	87-88 (27)	1.5328	1.0224	90.88	9.12	C ₁₅ H ₁₈	90.91	9.09	730, 1650, 2130, 3300		
Π	72.5	121-122 (1)	1.5284	1.0189	84.14	9.62	$C_{18}H_{24}O$	84.32	9.43	720, 1670, 2230, 3460		
III	76.3	125–127 (1)	1.5102	1.0599	84.55	8.44	$C_{17}H_{20}O$	84.95	8.39	730, 1650, 1740, 2230		
IV	85.6	151–152 (5)	1.5366	1.0436	84.95	8.80	$C_{18}H_{22}O$	84.99	8.71	720, 1590, 1660, 2240,		
										3420		
V	86.5	141–142 (3)	1.5301	0.9876	79.61	9.48	C ₁₈ H ₂₆ Si	79.92	9.69	735, 1255, 1665, 2195		
VI	70.5	66–67 (10)	1.5093	1.0532	84.32	8.59	C ₁₅ N ₁₈ O	84.06	8.47	805, 920, 2235, 3060		
VII	92.5	116–117 (3)	1.5272	1.0576	83.54	9.09	$C_{15}H_{20}O$	83.28	9.31	730, 1660, 1740, 2235		
VIII	96.0	mp 94°C	-	-	91.14	8.86	C ₃₀ H ₃₄	91.31	8.68	725, 1600, 2230		
IX	76.7	158–159 (1)	1.4872	1.0172	69.60	9.54	C ₂₁ H ₃₄ O ₃ Si	69.56	9.45	1250, 1610, 1640		
	L <u></u> _	L	L	L	L	L	L	L	L	L		

Table 1. Yields, physical constants, elemental analyses, and IR spectra of tetracyclododecene derivatives I-IX

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 39 No. 5 2003

$4\underbrace{13}_{3}\underbrace{11}_{10}$												
Comp. no.	1-H, m	2-H, 7-H, m	3-Н, 6-Н, т	4-H, 5-H, m	8-H, m	9-Н, т	10-H _A , m	10-H _B , m	11-H, 12-H, m	13-H, m		
I	1.7–2.1	1.7–2.3	2.7-3.0	5.8–5.9	1.7–2.3	2.4	0.9	2.1	1.1–1.35	2.2		
II	2.7-3.0	2.0-2.4	2.7–2.9	5.9-6.1	1.5-2.5	2.5	0.7	2.5	1.1-2.0	2.2		
III	2.8-3.1	2.1-2.3	2.7-2.9	5.7-6.1	1.6-2.5	2.6	0.9	2.5	1.1–2.1	2.0-2.2		
IV	2.7-3.2	3.4	2.6-2.8	5.6-6.1	1.3–1.5	2.2	0.8	2.4	1.2–2.4	1.9		
\mathbf{V}	2.7–2.9	2.1-2.3	2.7-3.1	5.7-6.0	1.6-2.2	2.3	0.9	2.5	1.1–1.9	2.1		
VI	2.6-3.1	1.9–2.2	2.7–2.9	2.7	1.2-1.4	2.3	0.9	2.3	1.1–1.4	2.2		
VII	2.7-3.2	3.3	2.6-2.8	5.8-6.2	1.1–1.3	2.2	0.8	2.6	1.1–2.3	1.9		
IX	2.6–3.3	2.3	2.6–2.7	5.6–6.1	1.2–1.4	2.4	0.9	2.5	1.2–2.1	2.1		

Table 2.	¹ H NMR	spectra ^a	(chemical	shifts	δ,	ppm)	of	tetracyclododecene	derivatives	I–VII	and	IX
----------	--------------------	----------------------	-----------	--------	----	------	----	--------------------	-------------	-------	-----	----

^a Other signals, δ, ppm: **I**: 1.85 s (C≡CH); **II**: 1.1–2.0 m (CH₃), 3.5 s (OH); **III**: 1.96 s (COCH₃); **IV**: 3.5 s (OH), 5.8 (=CH), 5.00–5.25 m (=CH₂); **V**: 0.2 s (SiMe₃); **VI**: 1.85 s (C≡CH); **VII**: 1.95 s (COCH₃); **IX**: 5.1 m and 5.4 m (SiCH=CH), 3.55 q (OCH₂), 1.05 t (OCH₂CH₃).

checked by TLC on Silufol plates and by GLC on a Chrom chromatograph (30% of SF-30 on Chromaton N-AW-DMCS).

9-(2-Propynyl)tetracyclo[$6.2.1.1^{3,6}.0^{2,7}$]**dodec-4ene (I).** A mixture of 9.9 g (0.15 mol) of allylacetylene, 19.9 g (0.3 mol) of freshly distilled cyclopentadiene, and 0.06 g of hydroquinone was heated in a sealed ampule for 15 h at 160°C. Vacuum distillation gave 21.8 g of compound **I**.

9-(4-Hydroxy-4-methyl-2-pentynyl)tetracyclo-[6.2.1.1^{3,6}.0^{2,7}]dodec-2-ene (II). Compound I, 19.8 g (0.1 mol), was added to a solution of ethylmagnesium bromide, prepared from 2.3 g of magnesium and 10.9 g of ethyl bromide in anhydrous ether. The mixture was stirred for 5 h under reflux and cooled to 5°C, and 5.8 g (0.1 mol) of acetone in 50 ml of ether was added. After appropriate treatment, vacuum distillation gave 14.8 g of compound II.

9-(4-Oxo-2-pentynyl)tetracyclo[$6.2.1.1^{3,6}.0^{2,7}$]**dodec-4-ene (III)** was synthesized as described above for alcohol **II** from 15.8 g of compound **I** and 8.2 g (0.8 mol) of acetic anhydride. The mixture was stirred for 6 h at room temperature and was then decomposed with water. After appropriate treatment, vacuum distillation gave 15.1 g of ketone **III**.

9-(4-Hydroxy-5-hexen-2-ynyl)tetracyclo-[6.2.1.1^{3,6}.0^{2,7}]dodec-4-ene (IV). A solution of 2.8 g (0.05 mol) of acrolein in dry ether was slowly added with stirring and cooling to the lotsitch compound prepared from compound **I**. The mixture was heated at $30-35^{\circ}$ C and was then treated with a dilute acid. The solvent was removed, and the residue was distilled under reduced pressure to obtain 10.8 g of product **IV**.

9-[3-(Trimethylsilyl)-2-propynyl]tetracyclo-[**6.2.1.1**^{3,6}.0^{2,7}]**dodec-4-ene** (**V**) was synthesized as described above for compound **II** from 5.9 g of enyne **I** and 3.3 g (0.03 mol) of chlorotrimethylsilane. The mixture was stirred for 3 h at 25°C and for 6 h under reflux. After appropriate treatment, vacuum distillation gave 7.0 g of compound **V**.

4,5-Epoxy-9-(2-propynyl)tetracyclo[6.2.1.1^{3,6}.0^{2,7}]dodecane (VI). Compound **I**, 7.9 g (0.04 mol), was dissolved in ether, and 10.1 ml of 85% peroxyacetic acid was added at 20°C under vigorous stirring. The mixture was stirred for 6 h and neutralized with a 10% solution of sodium carbonate. After appropriate treatment, vacuum distillation gave 6.1 g of epoxy derivative **VI**.

9-(2-Hydroxypropyl)tetracyclo[6.2.1.1^{3,6}.0^{2,7}]**dodec-4-ene (VII).** A mixture of 0.2 g of Hg(SO₄)₂ and 0.4 ml of H₂SO₄ in 10 ml of distilled water was heated for 1.5 h at 65°C; the temperature was then raised to 85°C, 3.96 g (0.02 mol) of compound **I** was added dropwise under vigorous stirring, and the mixture was stirred for 6 h and was left overnight. The precipitate was filtered off and washed with ether, and the filtrate was washed with a saturated solution of NaCl until neutral reaction and dried over calcined $MgSO_4$. The solvent was removed, and the residue was distilled under reduced pressure to obtain 4.0 g of compound **VII**.

1,6-Bis(tetracyclo[6.2.1.1^{3,6}.0^{2,7}]**dodec-9-en-4-yl)**-**2,4-hexadiyne (VIII).** Air was bubbled over a period of 8 h at 35°C through a mixture of 12.0 g (0.06 mol) of compound **I**, 8 g of CuCl, 60 ml of methanol, and 100 ml of pyridine. The mixture was then poured into a saturated solution of ammonium chloride and extracted with ether. The extract was washed with hydrochloric acid and dried over K_2SO_3 . The solvent was distilled off, and the residue was recrystallized from hexane. Yield of **VIII** 11.4 g.

9-[3-Triethoxysilyl)-2-propenyl]tetracyclo-[6.2.1.1^{3,6}.0^{2,7}]dodec-4-ene (IX). A mixture of 8.2 g (0.05 mol) of triethoxysilane, 9.9 g (0.05 mol) of compound **I**, and 0.003 g of (acetylacetonato)(dicarbonyl)rhodium in 50 ml of dry benzene was refluxed for 12 h. Vacuum distillation gave 13.7 g of **IX**.

REFERENCES

- 1. Acetylenes, Viehe, H.G., Ed., New York: Marcel Dekker, 1969.
- Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK- i YaMR-spektroskopii v organicheskoi khimii (Application of UV, IR, and NMR Spectroscopy in Organic Chemistry), Moscow: Vysshaya Shkola, 1971.
- 3. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., *Spectrometric Identification of Organic Compounds*, New York: Wiley, 1974, 3rd ed.
- 4. Henbest, H.B., J. Chem. Soc., 1959, p. 225.